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Robots are transforming the nature of human work. Although human–robot collaborations can create new
jobs and increase productivity, pundits often warn about how robots might replace humans at work and
create mass unemployment. Despite these warnings, relatively little research has directly assessed how
laypeople react to robots in the workplace. Drawing from cognitive appraisal theory of stress, we suggest
that employees exposed to robots (either physically or psychologically) would report greater job insecurity.
Six studies—including two pilot studies, an archival study across 185 U.S. metropolitan areas (Study 1), a
preregistered experiment conducted in Singapore (Study 2), an experience-sampling study among engineers
conducted in India (Study 3), and an online experiment (Study 4)—find that increased exposure to robots
leads to increased job insecurity. Study 3 also reveals that this robot-related job insecurity is in turn
positively associated with burnout and workplace incivility. Study 4 reveals that self-affirmation is a
psychological intervention that might buffer the negative effects of robot-related job insecurity. Our findings
hold across different cultures and industries, including industries not threatened by robots.
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Much has been written about the threat that robots, defined as
“embodied, automatically controlled, reprogrammable multipur-
pose entities that perform useful tasks for humans or equipment”
(International Federation of Robotics, 2017), pose to jobs (e.g., Lee
et al., 2018). Frey and Osborne (2017) estimated that in the next 2
decades, robots will replace humans in 47% of jobs, especially
manual labor job. A bricklaying robot can work six times faster than
the average construction worker, without breaks and benefits
(Murphy, 2017). Some economists are optimistic because the rise
of robots will create new jobs and roles for humans (Acemoglu &
Restrepo, 2018). Other experts are more pessimistic: Pundits have
attributed the rise of populism to robots taking jobs (Frey et al.,
2018)—especially those of middle-class men (Acemoglu & Autor,
2011)—and scholars predict that robots will create deep existential
threats (Frase, 2016). It is true that there are some “technophobes”

who—like the Luddites of the Industrial Revolution—explicitly
dislike and fear robots (Dekker et al., 2017; McClure, 2018), but
little work has examined how working adults generally react to the
rise of robots at work (Brosnan, 2002). Uncertainty about how
people respond to robots at work extends beyond the ivory tower,
with less than 17% of senior business leaders saying they understand
the consequences of this developing phenomenon (Davenport et al.,
2017). In this article, we examine the work-related psychological
and behavioral costs of exposure to robots at work.

In exploring reactions to the rise of robots at work, we draw from
cognitive appraisal theory of stress (Lazarus & Folkman, 1984) to
suggest that exposure to robots is positively associated with a sense
of job insecurity, broadly defined as the subjective perception that
one’s job is threatened (Greenhalgh & Rosenblatt, 1984). Even if
people’s jobs are not actually threatened by robots, we predict that the
prevalence of pessimistic societal rhetoric—along with the obvious
superiority of robots within a narrow domain of tasks—will likely
lead people to see robots as threat to their employment, resulting in a
heightened sense of job insecurity. We also theorize feelings of robot-
induced job insecurity will be associated with more maladaptive
workplace behaviors, including burnout and workplace incivility.

Given these negative effects, we also test a psychological inter-
vention that might buffer them: self-affirmation (Steele, 1988),
broadly defined as the recognition and assertion of the existence
and important values of one’s individual self. After appraising
robots as threats, self-affirmation may allow people to “realize
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that their self-worth does not hinge on the evaluative implications of
the immediate situation [exposure to robots]” (Sherman & Cohen,
2006, p. 187) and therefore experience less job insecurity and also
exhibit fewer of the resultant maladaptive behaviors.
Our research makes several contributions. First, we answer the

call from organizational scholars to study employee–robot interac-
tions (e.g., von Krogh, 2018). Other articles have considered the
effects of the rise of technology, automation, and robots on job
insecurity, but our work is perhaps the most thorough test of this
question to date, including multiple study designs and sampling
participants across cultures and industries.1 The sum result is a set of
robust and generalizable findings that can further advanced this
emerging literature. Second, we examine the downstream behav-
ioral costs (i.e., burnout and workplace incivility) of exposure to
robots. Understanding these costs can enable organizations to better
examine whether the increased use of robots is a blessing or a curse.
Third and finally, while some research has documented the negative
effects of being exposed to robots, our work examines a simple,
easily scalable, and practically important intervention to mitigate
these negative effects, which might have lasting practical implica-
tions for organizations who wish to introduce robots.

Theoretical Background

Before moving to our theory, we first define exposure to robots as
being exposed, either physically or psychologically, to robots that
take physical forms regardless of how autonomous the robots are.
We use this definition for several reasons. First, we only explore
robots with physical forms (i.e., embodied robots) because research
in social psychology has suggested that people’s reactions to
embodied technological agents are fundamentally different com-
pared to their reactions to disembodied technological agents (Epley
& Waytz, 2010). This definition sharpens our theoretical and
empirical focus by excluding mere algorithms or computerized
programs, which are both ubiquitous and relatively hard to circum-
scribe as a distinct social phenomenon. Although our work focuses
on embodied robots, there is an emerging stream of work that has
focused on employees’ reactions to algorithms. We suggest that
embodied robots are different compared to algorithms and as a result
more threatening. First, robots are perceived to have some levels of
agency but completely lack emotionality (Gray et al., 2007). Entities
that possess this unique combination are often perceived to be
threatening (Gray &Wegner, 2012; Wegner & Gray, 2016). Unlike
robots, algorithms do not possess a physical form and often are
perceived to be less agentic (Wegner & Gray, 2016). As a result,
although both are likely to be perceived as infallible or at least would
suppress humans’ capabilities in the future, robots would have a
much larger impact on employees’ perceived job insecurity.
Second, we do not distinguish between fully autonomous robots

(i.e., artificial intelligence [AI]-equipped) versus semi-autonomous
or preprogrammed robots because AI-equipped robots are still in
their infancy, and laypeople and employees are not commonly
exposed to them. Moreover, people tend to infer a similar amount
of mind across embodied robots (Wegner & Gray, 2016)—typically
hinging on the humanness of their appearance (Gray & Wegner,
2012)—regardless of their actual autonomy and processing capaci-
ties. This suggests that experience with robots is driven primarily
by the robot’s appearance rather than their autonomy. Third, we
examine both physical and psychological exposure because

cognitive appraisal theory of stress applies to both physical and
psychological stimuli (Lazarus & Folkman, 1984).

Cognitive Appraisal Theory of Stress

Job insecurity is a subjective appraisal, “a perceived threat to the
continuity and stability of employment as it is currently experi-
enced” (Shoss, 2017, p. 1914; italics added). As such, job insecurity
is a perceptual process and is the result of a subjective appraisal of
one’s surrounding environmental stimuli. Per cognitive appraisal
theory of stress (Lazarus & Folkman, 1984), when an individual
encounters a self-relevant stimulus, he or she will engage in
appraisal processes (Frijda, 1993; Ortony et al., 1988; Smith &
Pope, 1992)—a stimulus is either cognitively appraised as being
congruent or incongruent with one’s goals. Goal congruent apprai-
sals result in positive reactions, whereas goal incongruent appraisals
trigger negative reactions, such as stress. During this process, the
individual’s cognitive assessment of coping potential and/or future
expectations would also affect the specific reaction experienced
(Lazarus, 1991). In line with this theory, past research has revealed
that job insecurity represents individuals’ cognitive appraisals of
their surrounding threats (Greenhalgh & Rosenblatt, 1984;
Kinnunen et al., 2014; Roskies & Louis-Guerin, 1990). In essence,
cognitive appraisal theory of stress enables us to understand how
environmental stimuli—in our context, being exposed to robots—
might affect employees’ appraisals of job insecurity (Lee et al.,
2018). Importantly, appraisal theory of stress also enables us to
theorize the action tendency as a result of the experienced job
insecurity and interventions that can mitigate such negative effects.

We theorize that exposure to robots influences individuals’
appraisal process, leading them to appraise robots as being incon-
gruent with ones’ goals. This is because most would agree that
robots are already more efficient and competent than humans in
some jobs. For example, robots can outperform humans in manual
labor (Frey & Osborne, 2017; Murphy, 2017). Although knowledge
workers might still outperform their robot counterparts at this point
in time, many are well aware that robots are poised to outperform
them in the near future. For example, a robot surgeon recently
performed intestinal surgery on a pig and its results were better than
the same surgery performed by human surgeons (Greenemeier,
2016). The pace of innovation in robotics may thus cause people
to appraise the rise of robots as a threat to their jobs, leading to a goal
incongruent appraisal which results in job insecurity.

Importantly, exposure to robots not only triggers appraisal pro-
cesses that culminate in job insecurity but this sense of job insecurity
would also be particularly strong relative to other sources of job
threats. Appraisal theory of stress specifically discusses coping
potential and/or future expectations as key determinants of one’s
reaction to external stimuli (Lazarus, 1991). Compared to competing
with younger employees or skilled immigrants, individuals gener-
ally cannot learn new skills to outcompete robots in terms of
efficiency or engage in political activism to safeguard employment
from immigrants, thus putting coping potential in doubt. In addition,
virtually, all pundits and scholars have suggested that robots will
increasingly be integrated into the workplace, and that this future
trend is inevitable. As such, we theorize that employees would
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1 See Supplemental Materials for a comprehensive review of the human–
robot interaction at work literature to date.
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largely appraise their exposure to robots as an obstacle to their future
employability (Ashford et al., 1989; Lazarus & Folkman, 1984),
leading to significant feelings of job insecurity.
Some studies have provided preliminary support for this hypoth-

esis. Theoretically, Lee et al. (2018; also see Lu et al., 2020) suggest
that the rise of robots will lead not only to job insecurity but also to
career insecurity because entire careers and industries might be
overtaken by robots. Empirically, scholars observed a link between
job insecurity and new technologies, although the empirical rigor of
these studies is limited (Lingmont & Alexiou, 2020; Vassileva,
2020). We posit the following hypothesis:

Hypothesis 1: Exposure to robots is positively associated with a
sense of job insecurity.

Downstream Impacts on Behaviors

Numerous qualitative and quantitative reviews have revealed the
consequences of job insecurity (Cheng & Chan, 2008; De Witte,
2005; Lee et al., 2018; Shoss, 2017; Sverke et al., 2002). Scholars
generally agree that an individual would engage in both avoidance-
and approach-oriented coping behaviors (Lazarus & Folkman,
1984). Avoidance-oriented behaviors allow the individual to disen-
gage from the negative stimuli, whereas approach-oriented beha-
viors allow the individual to regain control over the stressful
situation. After individuals appraise robots as threatening and
experience job insecurity, we theorize that employees will (a)
disengage from their threatened work in the form of burnout and
(b) ameliorate the situation and regain control via dysfunctional
means in the form of incivility (Lazarus, 1993; Lazarus &
Folkman, 1984).
Job-insecure employees have to invest extra energy from their

resource reservoir to protect their existing resources (e.g., income,
social connection, and status), thereby diverting that energy from the
creation of new resources (Schaufeli et al., 2009). Therefore,
individuals exposed to a threatened job situation usually experience
a loss spiral of resources and eventually suffer from a resource
shortage (Dekker & Schaufeli, 1995). As such, as a result of
exposure to robots, job-insecure employees are more likely to
experience burnout (Maslach et al., 2001). Indeed, meta-analyses
have revealed a robust link between a sense of job insecurity and
physical and psychological health outcomes (Cheng & Chan, 2008;
Sverke et al., 2002). De Witte (1999) even suggested that the effects
of job insecurity on one’s well-being mirror the effects of actually
losing one’s job.
In addition to burnout, we also consider job insecurity’s effects on

employees’ workplace incivility toward their colleagues (for a
review, see Schilpzand et al., 2016). There are three reasons to
expect a sense of job insecurity would increase workplace incivility.
Job-insecure employees are motivated to keep their jobs and may
thus mistreat or undermine their coworkers as a means to compete
with rivals for limited positions (Shoss & Probst, 2012). Other
research by Qin et al. (2018) and by Huang et al. (2017) shows that
job-insecure employees will engage in more interpersonally deviant
behavior to regain their control over the situation when confronted
with stress (see also Van den Broeck et al., 2014). Finally, Huang
et al. (2017) found that job-insecure employees are more likely to
engage in deviance because they perceive an imbalanced social

exchange between themselves and their employers, leading them to
justify deviant behavior as appropriate.

Hypothesis 2: The relationship between exposure to robots and
(a) burnout and (b) workplace incivility is mediated by a
heightened sense of job insecurity.

An Intervention to Reduce Job Insecurity:
Self-Affirmation

Robots may create feelings of job insecurity, which can cause
negative consequences, but these feelings—and consequences—
may be mitigated by self-affirmation. Self-affirmation “can buffer
stress : : : [and it is an] effective stress management approach”
(Creswell et al., 2013, p. 1), by making the self to be more resilient
to potential threats (Cohen & Sherman, 2014). The cognitive
appraisal theory of stress argues that events are stressful when
people appraise that they lack the capacity to cope with them.
Self-affirmation therefore emphases that employees can cope by
affirming one’s self-worth and their ability to confront change at
work (Dunning, 2005; Schmeichel & Vohs, 2009; Sherman &
Cohen, 2006).

A common self-affirmation technique is “value essays,” in which
people reflect on their most important characteristics and values
(e.g., Kinias & Sim, 2016), including friends and family, social
skills, religion, and so forth. Creswell et al. (2005) found that these
self-affirmation exercises reduce levels of cortisol—a biological
stress marker—after a stressful exercise. Likewise, Sherman et al.
(2009) found that college students who were instructed to self-affirm
prior to their midterm examination period later reported lower stress
compared to their counterparts who did not self-affirm. In line with
these findings, we suggest that self-affirmation will help build a
“flexible self-system” that prompts less threatening appraisals when
people are exposed to robots. We posit

Hypothesis 3: Self-affirmation moderates the effect of exposure
to robots on a heightened sense of job insecurity such that the
relationship is weakened when people practice self-affirmation.

Overview of Studies

We test our hypotheses in six studies, with two additional pilot
studies (reported in the see Supplemental Materials) showing that
robots are uniquely associated with job insecurity when compared to
other threats to employment (e.g., immigrants, algorithms). Study 1
is an archival analysis of whether increases in the number of robots
across major U.S. metropolitan areas predict corresponding job
insecurity. Study 2 is a preregistered experiment that tests whether
temporarily exposing people to the idea of robots at work leads to
increased self-reported job insecurity. Study 3 is a field study that
examines the psychological experiences of engineers who interact
with robots on a daily basis. Finally, Study 4 is an online experiment
that examines whether self-affirmation might buffer the negative
effects of being exposed to robots.2 All studies (except the archival
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2 All studymaterials, data, and syntax can be found via this link (https://osf
.io/zxq52/?view_only=e67355419b274b7da997200499b33a7f). Study 2’s
preregistration report can be found via this link (https://osf.io/f7sd9/?vie
w_only=b331d1193c3e410fbf72960ced5b5cc7).
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Study 1) were approved by the National University of Singapore’s
institutional review board (MNO-20-0626). The data reported in
Study 3 were collected as part of a larger data collection. This is the
first publication from this broader data set.

Study 1: Archival Evidence Across 50 U.S. States

Our first study tested whether the prevalence of robots across 185
metropolitan areas in the United States could predict people’s efforts
to safeguard job security through online job searches at popular job-
recruiting sites. An association between the rising number of robots
and an increased interest in such sites would imply that robots lead to
greater job insecurity—manifested through looking for other jobs.

Method

Measures

Robot Prevalence. We measured robot prevalence using
metro-level data originally gathered by the International Federation
of Robotics and then organized and publicly shared by Brookings.
Brookings contained data on (a) robot workers per 1,000 human
workers in 2015 and (b) the percent change in robot workers within
the metro areas from 2010 to 2015 (these are the most recent data
published by both agencies). The robots tracked by these agencies
are industrial robots, which all take physical forms and are not mere
algorithms or computerized programs. One advantage of these data
was that they were scaled to (a) the population of human workers in
a metro area and (b) the level of robots in 2010, which avoided
confounding robot density with metro area size. In Table 1, we
present the five metro areas with the highest and lowest levels of
robot prevalence.
Job Insecurity. We measured job insecurity through the fre-

quency at which people searched for job-recruiting sites. We col-
lected data for searches on the five most popular job-recruiting sites
in the United States: LinkedIn, Glassdoor, ZipRecruiter, Indeed, and
Monster. To measure cross-sectional (robots and job insecurity in the
same year) and longitudinal variability (robots and job insecurity
over the same multiyear period) in job insecurity, we downloaded
data on how often people searched on these sites annually from 2010

to 2015 and then summed data across the four sites so that our
relationships were not confounded with any individual site.

Control Variable. We gathered unemployment data from the
U.S. Bureau of Labor Statistics and controlled for it in our analyses.
This is because unemployment rate is an often-used proxy for the
economic condition of a given location (Bianchi, 2013). Controlling
for it helps rule out the explanation that increases in prevalence of
robots and job search are both driven by economic growth (results
remained identical without this control; see Supplemental Materials).

Analytic Strategy

Google Trends scales its search data from 0 to 100 so that
individual data points are not interpretable, but variations across
geographic regions are meaningful. This means that we could not
compare overall changes in search rates from 2010 to 2015, but we
could compare variation across metro areas and analyze how
variation across metro areas changed over time. Importantly, these
scaled 0–100 values represent an interest in a search term among all
search terms, rather than raw interest. This metric means that our
results are not confounded with general internet (or search engine)
activity, which is a strength.

Results

Table 2 presents the descriptive information for all the study
variables in our analysis.

Cross-Sectional Results

Our multiple regression model revealed that job insecurity was
robustly associated with robot density across all years (i.e., 2010–
2015), β = .23, p = .002; and in 2015 alone, β = .17, p = .02. This
suggests that the metro areas with the most prevalent rates of robots
also have the highest rates of job-recruiting site searches, potentially
because people are more insecure about losing their jobs. Figures 1
and 2 depict this relationship. Table 3 (Models 1 and 2) summarizes
the regression results.

Longitudinal Results

We next tested for whether changes in robot density from 2010 to
2015 were associated with changes in job insecurity over the same
period. Multilevel regression supported our hypothesis. Change in
robot density from 2010 to 2015 was significantly and positively
associated with change in job insecurity, both when intercepts were
modeled as random, β= .05, p= .03; and when slopes and intercepts
were modeled as random, β = .05, p = .04. Table 3 (Models 3 and 4)
summarizes these statistics. Simple slope analysis revealed that,
among metro areas that experienced low (−1 SD) change in robot
density from 2010 to 2015, there was no effect of time on job
insecurity, b = .15, SE = .20, p = .45, but among metro areas that
experienced high (+1 SD) change in robot density, there was a
positive and significant effect of time on job insecurity, b = .61,
SE = .21, p = .003.

Supplementary Analyses

We tested whether robot density was associated with unemploy-
ment rate, and whether changes in robot density were associated
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Table 1
Metro Areas With the Highest and Lowest Industrial Robot Density
(Study 1)

Highest industrial robot
density in 2015

Lowest industrial robot
density in 2015

South Bend, IN (19.50) Anchorage, AK (.10)
Lafayette, IN (13.20) Fairbanks, AK (.10)
Toledo, OH (9.00) Laredo, TX (.10)
Lima, OH (8.80) Gainesville, FL (.20)
Bowling Green, KY (8.70) Honolulu, HI (.20)

Most industrial robot
increase (2010–2015)

Least industrial robot
change (2010–2015)

Rapid City, SD (+35%) Casper-Riverton, WY (−2%)
Albany-Schenectady-Troy, NY (+30%) Shreveport, LA (2%)
Gainesville, FL (+29%) Elmira, NY (4%)
Toledo, OH (+28%) Syracuse, NY (8%)
Louisville, KY (27%) Parkersburg, WV (9%)
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with changes in unemployment rate. These analyses showed no
association between robot density in 2015 and unemployment rate
from 2010 to 2015, β = .04, p = .57; or unemployment rate in 2015
alone, β = −.05, p = .54. A subsequent multilevel model showed
that increases in robot density from 2010 to 2015 were actually
negatively associated with unemployment during that time, β =
−.03, p = .006, although this association was not significant when
modeling slopes as random, β=−.03, p= .11. Taken together, these
analyses suggest that robot density from 2010 to 2015 had very
little—if any—effect on actual unemployment rates.
Although Study 1 provides support for Hypothesis 1, it has

limitations as with most other archival studies (Barnes et al.,
2018). First, our proxy for job insecurity is not perfect. Those
who opted to use job search websites might do so because they (a)
feel insecure about their current job (our hypothesis), (b) want to
explore new career opportunities, (c) are dissatisfied with their
current job, or a combination of the above. However, controlling
for unemployment rate in a metro area partially ruled out the

explanation that the rise of robots and economic growth stimulates
more job searches. Second, correlational analyses cannot reveal
causation. Third, our unit of analysis was at the metro area and we
are unable to identify if this association would hold at the individual
level. Fourth, the latest data only cover the years 2010–2015, and
results might differ if more recent data are available. We conducted
an experimental study next to address these limitations.

Study 2: Experimental Evidence From Singapore

Method

Participants and Procedure

We asked students from a large Singaporean university to invite
one of their parents (who must be a full-time employee) to complete
an online study in exchange for course credits. A total of 380 parents
completed the study; we dropped 37 who reported to not currently be
working, resulting in 343 parents (Mage = 51.4, 43% males). We
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Table 2
Descriptive Statistics and Correlations (Study 1)

Variable M SD 1 2 3 4

1. Robots per 1,000 human workers (2015) 1.91 2.38 —

2. Percent change in robot workers (2010–2015) .18 .05 .09 —

3. Job site interest 35.91 8.98 .23** −.01 —

4. Unemployment rate 6.65 2.15 .04 −.03 .06 —

Note. Robots per 1,000 human workers in 2015 is our operationalization of robot density. Percent change in robot workers from 2010 to 2015 is our
operationalization of change in robot density.
** p < .01.

Figure 1
A Visual Display of Industrial Robot Density and Job Site Interest (Study 1)

Note. Industrial robot density is represented via node size. Analyses showed that job site interest was significantly correlated with industrial robot density,
controlling for unemployment rate. See the online article for the color version of this figure.
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randomly assigned participants to one of three experimental condi-
tions. In the experimental condition, participants read an article
concerning the role of robots in businesses. In the robot mere-
exposure control condition, participants read an article that merely
discussed advanced robots, without mentioning their roles or applica-
tions in businesses. In the pure control condition, participants read a
work culture article unrelated to robots. After reading the assigned
article, participants rated their current levels of job insecurity with the
same three items (1 = strongly disagree to 5 = strongly agree)
adapted from De Witte et al. (2016; e.g., “Right now, I feel insecure
about the future ofmy job;” all survey items andmaterials used across
all studies are available in the Appendix B and C).
Ostensibly unrelated to the first part of the study, participants were

told that the researchers were interested in examining consumers’
preferences on five online services: career, music, online storage,
online dating, and entertainment. We further asked participants to
select the one in which they were the most interested at the moment
and then directed them to answer some questions specific to this
service. In reality, once participants made the selection they were
debriefed. Participants’ selection of the online career services option

served as a behavioral manifestation of a sense of job insecurity (0 =
others, 1 = online career services). A total of 21.6% of participants
selected this option. This measure correlated significantly with the
three-item measure of self-reported job insecurity (r = .19, p < .001).

Results

Descriptive statistics can be found in Table 4. A one-way analysis
of variance (ANOVA) revealed that participants in the experimental
condition reported significantly higher levels of job insecurity (M =
3.64, SD = 1.55) compared to participants in the robot mere-
exposure condition (M = 3.12, SD = 1.25) and pure control
condition (M = 3.12, SD = 1.40), F(342) = 5.14, p = .006.
A Tukey’s post hoc test3 revealed that job insecurity was signifi-
cantly higher in the experimental condition compared to the pure
control (difference= .52, p= .016, d= .35) and robot mere-exposure
(difference = .52, p = .014, d = .37) conditions. There was no
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Figure 2
A Scatterplot Display of the Relationship Between Industrial Robot Density in 2015 and Job Site
Interest in 2015 (Study 1), Which Allows for Visualization of the Standard Error

Note. Industrial robot density has been log-transformed for visualization purposes. See the online article for the
color version of this figure.

3 We also used the more conservative Bonferroni post hoc tests in these
analyses, and the two p values were .017 and .016, respectively.
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statistically significant difference between the robot mere-exposure
and pure control conditions. Furthermore, we found that participants
in the experimental condition were significantly more likely to select
the online career services option (n= 36) compared to participants in
the pure control (n = 19) and robot mere-exposure (n = 19)
conditions, χ2(2, N = 343) = 12.39, p = .002 (see Figure 3).4

Study 3: Experience-Sampling Evidence From India

The first two studies reveal that increasing roles for robots in the
workplace can increase job insecurity, but key questions remain. First,
it is unclear whether these effects extend to people interacting directly
with robots. Second, it is unclear whether these effects generalize to
people with highly technical jobs that are less likely to be threatened
by the rise of robots in the workplace. Third, it is unclear to what
extent increased feelings of job insecurity would translate to behav-
ioral outcomes. We address these issues in Study 3.5

Method

Participants and Procedure

We recruited participants from one of Asia’s largest automobile
manufacturing companies, which is headquartered inWestern India.
With the assistance of senior management, we initially contacted
202 engineers; 118 agreed to participate (see Appendix A, for
further descriptions of this firm).
Across 10 consecutive workdays. we sent daily surveys to the

participants at three fixed timeslots: before work, middle of the
workday, and end of work. The before-work survey (average
completion time: 7:28 a.m.) contained measures of daily positive
and negative affect, which we included as control variables. The
middle-of-workday survey (average completion time: 12:29 p.m.)
contained measures of daily adoptions of robots at work and daily
job insecurity. The end-of-work survey (average completion time:
4:31 p.m.) contained measures of daily burnout and daily workplace
incivility. Our final sample included 118 engineers who completed
915 day-level observations (see Table 5).

Measures

We translated the measures from English to Marathi following
Brislin’s (1980) back-translation procedure. We used the same scale
anchors (1 = strongly disagree to 7 = strongly agree) for our
measures.6

Before-Work Survey

We measured baseline positive affect (PA) and negative affect
(NA) at the beginning of the participants’ workday with five items
for each (Mackinnon et al., 1999). A sample item for PA[NA] is
“Right now, I feel excited [distressed].”

Middle-of-Workday Survey

We measured daily robot adoption by adapting four items from
the measurements used in Campion’s (1988) and von Krogh’s
(2018) studies. A sample item is “Today, many of the decision-
making activities of this job are automated or assisted by robots.”
We measured job insecurity using the three items as in Study 2.

End-of-Work Survey

We measured burnout using the three-item scale from Boswell
et al.’s (2004) study. A sample item is “Today, I felt burned out from
my work.”We measured workplace incivility using five items from
Lim and Cortina (2005). A sample item is “Today, I put a co-
worker down.”
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Table 3
Statistical Analyses (Study 1)

Predictor R2 b (SE) β t p

Model 1: Job insecurity across all years
Robot density .05 .86 (.27) .23 3.14 .002
Unemployment .002 .20 (.30) .05 .65 .52

Model 2: Job insecurity in 2015
Robot density .03 .54 (.23) .17 2.31 .02
Unemployment .008 .32 (.26) .09 1.25 .21

Model 3: Job insecurity over time (random intercepts)
Rise in robot density −.35.78 (13.26) −.10 −2.70 .007
Unemployment .67 (.17) .20 3.99 <.001
Year −.54 (.45) .07 −1.19 .23
Year × Rise in Robot Density 5.01 (2.33) .05 2.15 .03

Model 4: Job insecurity over time (random intercepts and slopes)
Rise in robot density −.35.91 (12.94) −.10 −2.77 .006
Unemployment .74 (.17) .22 4.46 <.001
Year −.49 (.49) .09 −1.01 .32
Year × Rise in Robot Density 5.07 (2.52) .05 2.01 .04

Note. SE = standard error. We do not report R2 coefficients for the multilevel models (Models 3 and 4) because there is variance explained at multiple
levels of analysis, which means that there is no single R2 statistic.

4 We also conducted supplementary analyses to probe the indirect effects
of experimental condition → self-reported job insecurity → selection of
career service (see Figure 3 and Suppplemental Materials).

5 We replicated Study 3’s core results with a multiwave, between-person
design in a Taiwanese firm. For details, please refer to the Supplemental
Materials (Item 6)

6 The coefficient αs of the scales across 10 days of observation were
presented on the diagonal in Table 5.
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Control Variables

Although we controlled for a number of variables in testing our
hypothesized model, all results remained unchanged when control
variables were removed; these results can be found in the Supple-
mental Materials. As noted, we included baseline affect in our
analyses because daily moods can affect people’s perceptions of
job insecurity (Huang et al., 2012). To rule out plausible serial
dependence and enable us to capture changes in our dependent
variables, we included prior-day measures (i.e., day t − 1) for each
dependable variable to control for the potential influence of serial
dependence (e.g., Judge & Ilies, 2004).

Analytic Strategy

Because our data are multilevel, we used multilevel modeling
with robust full maximum likelihood estimations in Mplus 7.4
(Muthén & Muthén, 2015). A multilevel confirmatory factor analy-
sis on the four study variables indicated acceptable model fit (χ2 =
220.14, df = 84, comparative fit index [CFI] = .98, root-mean-
square error of approximation [RMSEA] = .04, standardized root-
mean-square residual [SRMR] = .03). Following the recommenda-
tions by Hofmann and Gavin (1998) and Hofmann et al. (2000), we
person-mean-centered exogenous variables measured at the daily
level (Level 1) and grand-mean-centered between-person variables
(Level 2). Following the recommendations of Preacher et al. (2010),
we utilized a parametric bootstrap to estimate and assess the
significance of indirect effects simultaneously. We then applied
Monte Carlo simulation with 20,000 replications to construct
confidence intervals around the estimated indirect effect.

Results

Descriptive statistics are presented in Table 5; Table 6 sum-
marizes the results of the multilevel analyses. The relationship
between daily robot adoption and daily job insecurity was signifi-
cant (γ = .22, p < .01). We also find that the relationship between
daily job insecurity and burnout was significant (γ= .18, p< .01), as
with the relationship between daily job insecurity and instigated
incivility (γ = .20, p < .01). Incremental variance explained in
job insecurity, burnout, and incivility were 4%, 4%, and 7%,
respectively.

Monte Carlo simulations revealed that the indirect effect of daily
robot adoption on daily burnout through daily job insecurity was
positive (effect size of indirect effect = .04), and the 95% confidence
interval excluded zero [.020, .062]. The same analysis also revealed
that the indirect effect of daily robot adoption on daily instigated
incivility through daily job insecurity was positive (effect size of
indirect effect= .04), and the 95% confidence interval excluded zero
[.023, .067] (see Table 6, for the full results).

Study 4: Self-Affirmation as an Intervention

The first three studies reveal that when being exposed to robots
either physically (Studies 1 and 3) or psychologically (Study 2),
people tend to experience a sense of job insecurity. Study 3 also
demonstrates two negative downstream consequences—increased
burnout and incivility at work, via the mechanism of increased job
insecurity. As such, it is important to examine an intervention that
might buffer the negative effect that robot exposure has on people,
which is the goal of Study 4 (i.e., to test Hypothesis 3).7

Method

Participants and Procedure

We recruited 400 full-time employees (Mage = 30.97, 42.5%
females) from Prolific to participate in a 2 (robot exposure vs.
control) × 2 (self-affirmation vs. no self-affirmation) between-
subjects experiment. We randomly assigned participants to one
of four experimental conditions. We first presented participants
with a news article that either exposes them to robots or not.
Then, participants were either asked to engage in a self-affirmation
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Table 4
Descriptive Statistics and Correlations (Study 2)

Variable M SD 1 2 3 4 5

1. Conditions .98 .81 —

2. Job insecurity (survey measure) 3.29 1.42 .15** (.90)
3. Job insecurity (behavioral measure) .22 .41 .16** .19** —

4. Age 51.40 5.70 .05 .02 −.02 —

5. Gender 1.57 .50 −.02 −.00 −.04 −.13* —

Note. Conditions (0 = control, 1 = robots mere-exposure, 2 = robots at work); job insecurity behavioral measure (0 = others, 1 = online career services);
gender (1 = male, 2 = female); race (1 = White, 0 = others).
* p < .05. ** p < .01.

Figure 3
Mediation Effect in Study 2

Note. Odds ratios for the b and c paths have been converted to standardized
betas.
* p < .05. ** p < .01.

7 We conducted an additional study to replicate the buffering effects of
self-affirmation with another experimental paradigm. We omitted this study
due to length requirements. Interested readers can contact the first author for
more information about this replication study.
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writing exercise or not. Finally, participants rated their job insecurity
at the moment and completed a manipulation check item.

Robot Exposure Manipulation

In the experimental condition, participants read the same article
concerning the role of robots in businesses as in Study 2. In the
control condition, participants read the same travel article unrelated
to robots as in Study 2. We did not present a robot control condition
because Study 2 has already established that the “robots in busi-
nesses” condition is significantly different compared to the robot
control condition.

Self-Affirmation Manipulation

After the robot exposure manipulation, we used a well-
established writing task to manipulate participants’ self-affirmation
(see McQueen & Klein, 2006, for a review). We presented parti-
cipants with a list of 11 characteristics and values (e.g., sense of
humor, athletics, relations with friends and family, social skills) and
asked them to rank order these characteristics and values in order of
importance to them. After the ranking, participants in the self-
affirmation condition were asked to write a couple of sentences
to explain why their top-ranked value is important to them. Parti-
cipants in the no self-affirmation condition were asked to write a
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Table 5
Descriptive Statistics and Correlations Among Study Variables (Study 3)

Variable M SD

Correlation

1 2 3 4 5 6 7

Within-person variables
1. Daily positive affect (T1) 4.42 1.44 (.92)
2. Daily negative affect (T1) 2.03 1.24 −.13** (.92)
3. Daily robot adoption (T2) 5.36 1.05 .31** −.16** (.89)
4. Daily job insecurity (T2) 4.29 1.40 −.02 .22** .12** (.80)
5. Daily burnout (T3) 3.78 1.61 −.45** .38** −.21** .22** (.91)
6. Daily instigated incivility (T3) 3.26 1.42 −.47** .39** −.22** .26** .65** (.90)
7. Daily job performance (T3;

supplementary)
4.71 1.43 .76** −.14** .41** .08 −.42** −.40** (.84)

Between-person variables (demographics)
8. Gender 1.84 0.37 −.12 .43** .14 .75** .43** .45** .05
9. Education 2.98 0.54 .25** −.20 −.25** −.14 .22 −.16 −.09

10. Age (in years) 29.79 4.57 .11 −.02 −.02 −.01 .10 .11 .10
11. Tenure (in years) 2.98 1.60 −.21 −.15 .01 −.22 −.45** −.24** .05

Note. Gender (1 = female, 2 = male); education (1 = primary school, 2 = secondary school, 3 = professional diploma or vocational school, 4 =
undergraduate or above). Day-level N = 915; person-level N = 118; T1 = Time 1; T2 = Time 2; T3 = Time 3; coefficient α estimates of reliability are in
parentheses on the diagonal. The reliabilities were the mean αs across 10 days of observation.
** p < .01.

Table 6
Multilevel Path Analysis and Indirect Effects (Study 3)

Variable

Daily job insecurity Daily burnout Daily instigated incivility

(T2) (T3) (T3)

γ SE γ SE γ SE

Control variables
Daily positive affect (T1) −.03 .04 −.44** .03 −.40** .03
Daily negative affect (T1) .27** .04 .37** .04 .32** .04

Lagged control variables
Day t − 1 job insecurity −.10* .04 — — — —

Day t − 1 burnout — — −.07* .03 — —

Day t − 1 instigated incivility — — — — −.08* .03
Predictors
Daily robot adoption (T2) .22** .05 −.12* .05 −.11* .05
Daily job insecurity (T2) — — .18** .03 .20** .03

Indirect effects
.04 .04

95% CI [.020, .062] 95% CI [.023, .068]

Note. CI = confidence interval; SE = standard error. Day-level N = 915; T1 = Time 1; T2 = Time 2; T3 = Time 3. Effects that are significant are bolded
for multilevel mediation analysis. Estimates reflect unstandardized coefficients; we used random slopes for our final analysis. We also examined whether
including the direct effects of daily adoption of robot on outcome variables influenced our results; it did not, so we omitted these paths in our final model
for the sake of parsimony.
* p < .05. ** p < .01.

EXPOSURE TO ROBOTS 9

Template Version: 12 May 2022 ▪ 3:39 pm IST APL-2020-0030_format_final ▪ 16 August 2022 ▪ 8:48 am IST



couple of sentences to explain why their eighth-ranked value is
important to the average college student.

Job Insecurity Measure

Participants rated their current levels of job insecurity with the
same three-item job insecurity measure used in Studies 2 and 3.

Manipulation Check

At the end of the study, participants were asked “which of these
societal innovations will impact the future of business the most?” (1=
not at all to 7= verymuch). The option “robotics”was embeddedwith
four other response options (i.e., globalization, cloud storage, democ-
ratization, and remote communication). As expected, participants in
the robot exposure condition rated the item “robotics” to be signifi-
cantly higher (M = 5.13, SD = 1.19) than participants in the control
condition (M = 4.75, SD = 1.37), t(398) = 2.99, p = .006, d = .30.

Results

Descriptive statistics can be found in Table 7. A t test revealed that
participants in the robot exposure experimental condition reported
significantly higher levels of job insecurity (M = 3.75, SD = 1.78)
compared to participants in the control condition (M = 2.93, SD =
1.52), t(398) = 4.98, p < .001, d = .50. This result supports
Hypothesis 1.
A two-way ANOVA revealed that there is a significant interaction

between the robot exposure manipulation and the self-affirmation
manipulation predicting a sense of job insecurity, F(1, 396) = 5.20,
p = .023, η2p = .013, such that the effect of robot exposure on job
insecurity was stronger for participants who did not engage in self-
affirmation (M= 4.24, SE= .17) than participants who did engage in
self-affirmation (M = 3.31, SE = .16, p < .001, d = .40; Figure 4).
There was no statistically significant difference for participants in
the control condition as a function of self-affirmation (self-affirma-
tion:M= 2.83, SE= .17 vs. no self-affirmation:M= 3.02, SE= .16;
p = .417). These results provide support for Hypothesis 3.

General Discussion

Theoretical Contributions

Our studies heed the call from organizational scholars
(Bamberger, 2018; von Krogh, 2018) to explore the dynamic and
nuanced interactions between robots and humans at work. We find
that employees generally feel insecure when being exposed to

robots. This sense of job insecurity also leads them to feel more
burnout and be less civil to coworkers, both of which are very costly.
As such, our work suggests that, despite some positive effects of
robots at work (e.g., reduced personnel costs), it may also have
unintended psychological costs. Meanwhile, in extending work
from scholars about the impacts of technologies on job opportunities
in other literatures (e.g., Autor, 2010; Autor et al., 2003), our
multimethod and multicultural findings specifically demonstrate
that the adoption of robots can perhaps be equally influential in
inducing job insecurity among employees working in both low-
skilled and intellectually demand jobs. Thus, our work sheds further
lights on the consistently threatening nature of robots.

Pioneers of robotics forecasted that robots might soon replace
humans in many jobs (Frey & Osborne, 2017), but—as with the
hover car and interstellar travel—many of these projected robot
powers remain more science fiction than science. Study 1 provides
some indirect evidence for this, suggesting that robot prevalence is
not associated with actual unemployment rate. This seems to imply
that robots’ capacities are advancing at an increasingly rapid pace,
but then so are the opportunities they create. All in all, while being
exposed to robots leads people to feel anxious in terms of job
insecurity, these feelings might have been largely due to subjective
appraisal rather than objective loss of employment.

Finally, we hope that our work can open up a new line of inquiry
in the organizational literature. Extant works in employee–robot
interaction have largely been theoretical in nature due to its recency
(Gregory et al., 2021). Our work provides a foundation for future
scholars to explore nuances associated with the increased use of
robots at work. All in all, we hope our work can spark additional
works in this emerging domain.

Practical Implications

Our work suggests that top managers who wish to introduce a
robot workforce should be mindful of its negative effects on their
employees. Intuitively, such a strategy would improve organiza-
tional efficiency and performance (e.g., Murray et al., 2021), but our
work has shown that there are unintended costs in the form of
employee job insecurity, burnout, and incivility that must be
accounted for (Studies 1–3). Fortunately, our results from Study
4 demonstrate that these negative effects can be significantly
mitigated with a costless self-affirmation intervention. Employees
want to think positively of themselves, and we encourage managers
and leaders to encourage self-affirmation whenever possible. Impor-
tantly, the positive effects of self-affirmation appear to be sustained
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Table 7
Descriptive Statistics and Correlations (Study 4)

Variable M SD 1 2 3 4 5

1. Robot exposure manipulation .50 .50 —

2. Self-affirmation manipulation .50 .50 .05 —

3. Job insecurity 3.34 1.70 .24** −.15** (.92)
4. Age 30.97 11.43 .02 .04 .03 —

5. Gender 1.42 .50 .03 .03 .02 .10* —

Note. Robot exposure manipulation (0 = control, 1 = robot); self-affirmation manipulation (0 = control, 1 = self-affirmation); gender (1 = male, 2 = female).
* p < .05. ** p < .0.
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even after a year after such interventions (Cohen et al., 2009)
because “a moment of validation at a threatening transition could
improve a trajectory” (Cohen & Sherman, 2014, p. 343). For
example, employees who self-affirm could trigger a cascade of
positive effects (e.g., greater confidence in collaborating with the
robots, working with other coworkers). As a result, we strongly
encourage organizations to adopt self-affirmation interventions to
combat the rising robot workforce and its resultant job insecurity.

Limitations and Future Directions

We note several limitations. First, these studies focused primarily
on a single construct—job insecurity. We also examine only two
downstream consequences of job insecurity: burnout and incivility.
It is interesting that we observed direct negative effects to these
outcomes and indirect positive effects, which suggest that there are
competing mechanisms at play. We encourage future research to
explore such mechanism. For example, collaborating with robots at
work may help employees to improve their skills development and
job satisfaction, which thus reduce their burnout (Smids et al.,
2020). In addition, there are also competing perspectives in terms
of whether robots can indeed increase employees’ job performance;
robots at work may help effectively augment employees’ pursuit of
work goals, which thus providing them more self-regulatory re-
sources and reduce the occurrence of these deleterious outcomes
(Fernandez et al., 2012; Wilson & Daugherty, 2018). On the one
hand, robots can obviously enhance human employees’ perfor-
mance because they enhance efficiency. On the other hand, how-
ever, our stress account suggests that this increased efficiency might
be offset by increased job insecurity. We provide a preliminary
exploration of this in Study 3 by asking employees to report their job
performance with a three-item scale fromMitchell et al. (2019) at the
end of the workday. A multilevel path analysis revealed that the
relationship between daily robot adoption and daily task perfor-
mance was significant (γ = .25, p < .01). Although we note the self-
report nature of our job performance scale, this result does provide

some insights into whether robots at work can increase or decrease
employees’ performance.

Second, our empirical studies focused on embodied robots but did
not distinguish the level of “humanness” of the robots, which we
note as a limitation. This limitation is consistent with recent
taxonomies of human–robot interactions (e.g., Onnasch &
Roesler, 2021; Yanco & Drury, 2004), where scholars have speci-
fied the type of task robots performed, the appearance of the robots,
and the autonomy of the robots all as boundary conditions in
determining the consequences of such interactions. In addition,
our studies focused on embodied robots and did not consider
disembodied algorithms. Although our pilot studies provide some
evidence that exposure to algorithms is generally less threatening
compared to exposure to robots, we encourage future work to
consider algorithms in their theorizing as well.

Lastly, we did not conduct a study to explore whether self-
affirmation can moderate the two mediation effects. That is, while
we have evidence that self-affirmed individuals do experience lower
levels of job insecurity after being exposed to robots, we do not
know if this reduced job insecurity would in turn lower burnout and
incivility. Although likely, we suggest future research to test the
moderating effects of self-affirmation in other settings and with an
expanded list of dependent variables.

Conclusion

No one knows with certainty how robots will shape our future
society, and that uncertainty itself can be unnerving (Knyazev et al.,
2005). Technology may have fundamentally changed the nature of
work, but people seem fundamentally unchanged:We still fear that a
workplace with robots is a workplace without us.
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Appendix A

Sample Pictures and Description of the Industrial Robots in Study 3

Brief Description

This organization deploys smart technology solutions in their
robots to smoothen the robot-assisted manufacturing processes.
The engineers in our sample are the primary “handlers” of the
robots, wherein a major part of their job involves jointly coordi-
nating work-related activities with the robots in the production
line. For example, to manage the complex daily production cycle,
engineers need to collaborate and interact with robots to execute a
series of complicated commands in order to track the production
progress and respond to deviations. In addition, the robot adoption
in this context enables these engineers to acquire real-time data
and information in order to make accurate work decisions
throughout the production cycles. This integration of robots
into the daily work activities of skilled workers (e.g., engineers)
indeed mirrors worldwide robotic adoption trends (Business
Insider, 2016). Thus, our sample is illustrative of a rapidly
developing phenomenon affecting employees in organizations
worldwide.
Apart from the extraordinary capability in handling assem-

bly, moving, packaging, transporting, and other challenging
physical task, these robots are “intelligent” in a way that they
are able to be collaborative, working together, and giving each
other feedback. As highlighted earlier in our Method section,
this company has specifically combined the professional tech-
niques of data analytics, the use of smart sensors and actuators,
together with the machine learning algorithms to facilitate
smart manufacturing processes associated with efficiency op-
timizations. The robot operators (engineers) in the company
have to interact with these robots in coming up with real-time
figures and data in monitoring and streamlining the daily
operation flows. Meanwhile, they have to coordinate with
the robots in acquiring timely information about the opera-
tional progress on a daily basis.
Each engineer is responsible for managing the manufacturing line

infrastructure and, more importantly, must jointly coordinate work
activities with advanced robots during the production processes on a
daily basis.

Note. See the online article for the color version of this figure.

Note. See the online article for the color version of this figure.
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Appendix B

Scenarios Used in Studies 2 and 4

Experimental Condition (Studies 2 and 4)

The Increasing Role of Robots at Work

Autonomous cleaning robots that can sing, rap, speak in the four
official languages here will be deployed around Singapore.
Local robotics firm LionsBot International (LionsBot) announced

that they will be building 300 autonomous professional cleaning
robots locally.
And as part of a special agreement between LionsBot and six

cleaning partners, the robots will be progressively deployed around
Singapore from Wednesday through to March 2020.
The robots come in different shapes and sizes.
For example, the LeoBots Family robot is 63 cm wide and has the

ability to navigate through doorways and tight corridor spaces.
Since the beginning of the year, the company has developed 13

different models of cleaning robots that are able to scrub, mop,
vacuum, sweep, shine, and even transport cleaning equipment.
The robots can operate indoors and outdoors.
In April last year, LionsBot launched its first two cleaning robots

at the National Gallery Singapore and Jewel Changi Airport.
At Changi Airport, wine-loving passengers arriving at Terminal 2

(T2) will now have a special robotic assistant to help them select
duty-free wines at Duty Free Stores (DFS) Singapore.
This initiative is part of a trial by Changi Airport Group (CAG), in

collaboration with DFS Singapore, Temasek Polytechnic, and Soft-
Bank Telecom Singapore.

Through observations, on-ground feedback and surveys, we found
that many arriving passengers would like to purchase duty-free
wine, but do not know where to start, given the large selection
available. Leveraging TP’s deep wine expertise and STS’s social
robotics capabilities, we hope to make the wine selection process
hassle-free and exciting for our passengers, as they discover new
products and personalised retail offerings that are tailored to their
preferences

said Ms Teo Chew Hoon, Group Senior Vice President of Airside
Concessions, CAG.
With the introduction of robots, the airport hopes to enhance the

shopping experience of passengers by making it seamless and more
enjoyable.

Robot Control (Study 2 Only)

Boston Dynamics’ First Consumer Product Might Be a
Battle Bot

Boston Dynamics’ faintly terrifying quadruped dog robot—Spot-
Mini—was first announced in 2016. The robot has a whole lot of
whizzy sensors and cameras, spindly mechanical legs, a creepy
grabber arm that opens doors, and mind-bogglingly impressive
robotics technology. It is expected to carry a five-digit price
tag—a fitting sum to bring the uncanny valley direct to your home.
But it is never been very clear what, exactly, the point of Spot is—

especially as a consumer product.
Speaking in Las Vegas at Amazon’s inaugural public conference

on robotics, machine learning, automation and space this evening,

Boston Dynamics CEOMarc Raibert gave an audience of engineers,
astronauts, and Robert Downey Jr. a key clue: entertainment. In the
future, multiple players might fight Spots against each other, he said,
as a “network game with physical actors,” basically allowing remote
players to control Spot as BattleBots. There were also reports that
Spot is being β tested for use on playgrounds. In a video shown to the
audience, four of the robots were shown tussling over a blue ball in
an orange enclosure, before tumbling to the ground.

And, like any new technology, they sometimes malfunction.
During a live demo, one of the Spot robots collapsed without
explanation, folding up its legs and nose-diving to the floor before
a replacement trotted onstage. But as the robots’ handlers demon-
strated, they are eminently simple to control—so simple even I could
do it. Using a D-pad, you can steer the robot as you would any RC
car or mechanical toy. A quick tap on the video feed streamed live
from the robot’s front-facing camera lets you select a destination for
it to walk to, and another tap lets you assume control of a robot arm
mounted on top of the chassis. It all feels very intuitive.

These entertainment robots are expected to go on sale in 2020 in
Singapore.

Pure Control (Studies 2 and 4)

Working the Singaporean Way

Singapore, a cosmopolitan melting pot of cultures where east
meets west, has a work culture made up of a uniquemix of Asian and
Western cultural influences. These cultural themes bring about
unwritten cultural rules and regulations that govern the way Singa-
poreans act in a place—and in this case, your workplace. The
noninterventionist approach taken by the Singapore government
provides a relaxed environment for cultural tendencies to predomi-
nate. Large western Multinational corporations (MNCs) located in
Singapore will often exhibit predominantly western-style work
culture, whereas majority of the local government and private
companies will have greater influence of traditional Asian culture
in their work environment. Local firms are mainly influenced by
cultural characteristics: high power distance, collectivism, high
uncertainty avoidance, and long-term orientation.

While it may be true that some Singaporeans (especially the
younger and more modern ones) may not wholly practice the
Singaporean traditional values of group-centredness, respecting
hierarchical relationships and preserving “face,” you are strongly
advised to learn and understand the behavioral patterns of the
Chinese, Indians, and Malays of Singapore for one reason: The
majority of Singaporeans you will be working still preserve tradi-
tional values—regardless of how Westernized they may seem.

In terms of work hours, many companies in Singapore have
moved from 6 days to 5 days per week schedule. This is especially
true forMNCs and companies engaged in white collar work. Normal
working hours are 40–45 hr per week. However, depending on the
workload youmay end up spendingmore hours per week. Normally,
there is half-an-hour to one-hour lunch break. Overtime is not
applicable to most of the professional and managerial jobs.

Overall, Singaporeans have a predominantly strict attitude to life,
marked by clear authority structures and distinct social status lines.
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Appendix C

Survey Items Used in Pilot Studies 1–2, Studies 2–4

Job Insecurity Scale (Pilot Studies 1–2, Studies 2, 4)

1. Right now, I think that I will soon lose my job.

2. Right now, I feel insecure about the future of my job.

3. Right now, I think that I may lose my job in the near future.

Online Career Service Selection (Study 2)

Please note that we counterbalanced the ordering of the five
options in the actual study.

Positive Affect (Study 3)

1. Inspired

2. Alert

3. Excited

4. Enthusiastic

5. Determined

Negative Affect (Study 3)

1. Afraid

2. Upset

3. Nervous

4. Scared

5. Distressed

Robot Adoption (Study 3)

1. Today, many of the decision-making activities of this job
were automated or assisted by robot.

2. Today, many of the problem-solving activities of this job
were automated or assisted by robot.

3. Today, many of the learning activities for this job were
automated or assisted by robot.

4. Today, many of the reasoning needed for this job were
automated or assisted by robot.

Job Insecurity Scale (Study 3)

1. Today, I thought that I will soon lose my job.

2. Today, I felt insecure about the future of my job.

3. Today, I thought that I might lose my job in the near future.

Burnout (Study 3)

1. Today, I felt emotionally drained from my work.

2. Today, I felt burned out from my work.

3. Today, I felt exhausted when I think about having to face
another day on the job.

Incivility (Study 3)

1. Today, I put a coworker down or acted condescendingly
toward a coworker.

2. Today, I paid little attention to a coworker’s statements or
showed little interest in a coworker’s opinion.

3. Today, I made demeaning or derogatory remarks about a
coworker.

4. Today, I addressed a coworker in unprofessional terms
publicly or privately.

5. Today, I ignored or excluded a coworker from professional
camaraderie.
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