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Highlights
Humans are increasingly interacting in
environments mediated by algorithms
that control the flow of social information,
yet little is known about how algorithms
impact social learning.

Algorithm-mediated social learning is
currently characterized by functional
misalignment: human social learning
evolved to promote adaptive behaviors
that foster cooperation and collective
problem-solving, but content algorithms
are designed to sustain attention and
engagement on platforms.
Human social learning is increasingly occurring on online social platforms, such
as Twitter, Facebook, and TikTok. On these platforms, algorithms exploit existing
social-learning biases (i.e., towards prestigious, ingroup, moral, and emotional
information, or ‘PRIME’ information) to sustain users’ attention andmaximize en-
gagement. Here, we synthesize emerging insights into ‘algorithm-mediated so-
cial learning’ and propose a framework that examines its consequences in
terms of functional misalignment. We suggest that, when social-learning biases
are exploited by algorithms, PRIME information becomes amplified via human–
algorithm interactions in the digital social environment in ways that cause social
misperceptions and conflict, and spread misinformation. We discuss solutions
for reducing functional misalignment, including algorithms promoting bounded
diversification and increasing transparency of algorithmic amplification.
Emerging evidence suggests that con-
tent algorithms exploit social-learning
biases by amplifying prestigious, ingroup,
moral and emotional (‘PRIME’) informa-
tion and teaching users to produce
more of this content via social learning.

In specific contexts, such asmorality and
politics, these human–algorithm interac-
tions saturate the environment with
PRIME information, which leads to social
misperceptions that can promote con-
flict andmisinformation rather than coop-
eration and collective problem-solving.

The framework of functional misalign-
ment can shed light on how to design al-
gorithms that foster more functional
social learning in digital environments.

1Northwestern University, Kellogg School
of Management, Evanston, IL, USA
2Karolinska Institutet, Department of
Clinical Neuroscience, Solna, Sweden
3Princeton University, Department of
Psychology, Princeton, NJ, USA
4Princeton University, University Center
for Human Values, Princeton, NJ, USA
5Website: williamjbrady.com

*Correspondence:
william.brady@kellogg.northwestern.edu
(W.J. Brady).
@Twitter: @william__brady (W.J. Brady).
Social learning in the digital age
Humans rely on social learning to navigate the world. We observe others, copy their behavior,
infer their goals and intentions, and notice whether our own and others’ behavior is punished
or praised [1–3]. In the digital age, social learning is increasingly taking place in online social
networks hosted on platforms such as Facebook, Twitter, and TikTok. Social learning on these
platforms has an important nonhuman dimension because of content algorithms that manage
what information we see and how we see it. Algorithm-mediated social learning means that, for
the first time in history, much of what we learn and how we learn is influenced by content algo-
rithms designed by corporations [4–6].

Algorithm-mediated social learning has far-reaching implications. Algorithms impact how we en-
counter moral and political issues on Twitter and Facebook [7,8]i,ii, how videos go viral on TikTok
[9], and which conspiracy theories are promoted on YouTube [10,11]. Algorithms filter how we
learn about current events and what we find out about our friends [12]. Perhaps the most startling
factor in these trends is that we still know little about how algorithms are impacting our social
learning. The rise of algorithm-mediated social learning has been so swift that it has outpaced
the scientific study of social media [13].

Here, we propose that algorithm-mediated social learning is currently characterized by a problem
we call ‘functional misalignment’. In brief, human social learning evolved over hundreds of
thousands of years to promote adaptive behaviors that allow for cooperation and collective
problem-solving [3,14,15]. Thus, a key function of human social learning is to promote coopera-
tion and collective problem-solving. By contrast, content algorithms have appeared over the past
decade to maximize the time people spend online to maximize advertising revenue [5,16–18]. In
other words, the function of content algorithms is to maximize engagement online. We suggest
that the cooperative functions of human social learning and the engagement-maximizing func-
tions of content algorithms are misaligned because engagement maximization does not in
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practice promote cooperation and collective problem-solving. This misalignment can yield dys-
functional human–algorithm interactions in online social networks, with maladaptive conse-
quences, including social misperceptions that can exacerbate conflict and the spread of
misinformation.

After reviewing evidence for functional biases in human social learning, we conceptualize and re-
view evidence for the problem of functional misalignment in algorithm-mediated social learning,
demonstrating that it involves an interaction of algorithmic amplification and two forms of
human social learning: observational learning and reinforcement learning. We then show how
functional misalignment may escalate to produce maladaptive cultural evolution in contexts of
morality and politics. We end by discussing psychologically informed solutions for reducing func-
tional misalignment in human–algorithm interactions via strategies that help algorithms promote
more functional social learning.

Biased social learning and the problem of functional misalignment
Social-learning biases
Humans do not learn from others in a uniformmanner; there are several well-documented context
and content biases that have emerged to optimize the function of social learning [19,20]. Context
biases describe a tendency to learn in particular contexts, and from particular kinds of individual
[19]. For example, humans tend to copy prestigious individuals [21–23] and disproportionately
learn from their ingroups [24,25]. Prestige bias fosters efficient social learning from successful in-
dividuals, since markers of prestige (e.g., a large house) can indirectly signal the value of learning
from the individual [21–23]. Ingroup bias can be an effective strategy in the evolution of mutual co-
operation [26], and it may also help humans acquire information that is most relevant to survival in
their particular ecologies [27–29].

Content biases describe a tendency to disproportionately attend to, and learn from, certain types
of informational content in our environments [14,30]. For example, humans pay outsized attention
to moralized information [31–33] and to emotionally arousing information, specifically negatively
valenced information [30,34–36]. A bias toward moralized information can help human groups
regulate social norms and stigmatize norm violators [37,38], whereas a bias toward negative so-
cial information may have helped us quickly detect and communicate social threats, such as de-
ceptive individuals [39]. Attending disproportionately to moralistic and negative emotional social
information is especially functional when such information is relatively rare, and this kind of infor-
mation is highly diagnostic (e.g., that someone is uncooperative) [39–42]. In summary, human so-
cial learning demonstrates biases toward ‘PRIME’ information, and these biases often promote
adaptive behaviors that support cooperation and collective problem-solving.

Constraints on social-learning biases
However, biases toward PRIME information are only functional contingent upon specific statisti-
cal contingencies in an environment. A bias toward prestige can be misleading in environments
where prestige does not meaningfully signal success. People may drive luxury cars because of
a large inheritance, own big houses because of a high-risk loan, or boast large followers on
Instagram because they purchased bots. In these cases, learners may in fact suffer when they
are biased toward learning from prestigious individuals [43]. Cult leaders, corrupt politicians,
and conmen all use reputation and prestige to spread false or malicious information since they
are assumed to be knowledgeable or trustworthy [14].

Biases toward the ingroup and to negative moralized information also have functional limits.
Ingroup bias may lose its functionality when environments become more heterogeneous and
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identities are formed by arbitrary social divisions (e.g., race [44]). Under these conditions, solely
attending to ingroup information can lead to false consensus [45], discrimination [46], and
more generally forgoing learning opportunities from the outgroup. Negative moralistic information
may also become dysfunctional if it becomes more commonplace in social environments. If peo-
ple regularly accuse one another of immorality, for example, these accusations may become less
useful for diagnosing norm violations and preserving cooperation [47–49].

In summary, social-learning biases that draw us toward PRIME information are generally func-
tional, but they become maladaptive when PRIME information is overrepresented in the environ-
ment. When everyone claims to be prestigious, it is difficult to know whom to learn from. When all
disagreement is framed as group division, it is easy to unreasonably escalate conflicts. In addition,
when dialog is frequently negative, emotional, and moral, it can be difficult to distinguish the hei-
nous from themerely disagreeable. Flooding people with PRIME informationmay be the best way
to debase the value of our biased attention to this information. Content algorithms may be
overloading people with PRIME information in just this way.

The problem of functional misalignment
We use the term ‘functional misalignment’ to describe how algorithms exploit social-learning
biases to amplify PRIME information to the point where those biases are no longer useful in pro-
moting cooperation and collective problem-solving (i.e., they are no longer functional). Although
there are many cases where algorithms can promote adaptive cooperation and collaboration
(Box 1), we focus here on learning contexts (e.g., discussions about morality and politics)
where the amplification of PRIME information causes social misperceptions associated with in-
creased conflict and the spread of misinformation. As we will argue, this consequence is not sim-
ply the result of algorithms amplifying PRIME information, but rather the interaction of algorithmic
amplification and humans learning to produce more PRIME information by observing the outputs
of algorithm amplification (observational learning) and being rewarded by others due to their own
social-learning biases (reinforcement learning).

In summary, when content algorithms exploit social-learning biases, a feedback loop of human–
algorithm interaction occurs that over-represents PRIME information in the environment and pro-
motes social misperceptions that can lead to conflict and misinformation rather than cooperation
and collective problem-solving (Figure 1).

Content algorithms exploit social-learning biases
At the time of writing, there were over 4 billion social media users worldwideiii. Facebook users
upload more than 300 million photos per day and post 510 000 comments per minute, and
there are 500 million Twitter posts per dayiv,v. Users clearly do not have the time or attention to
Box 1. Benefits of algorithm-mediated social learning

Although we highlight the problem of functional misalignment that arises from algorithm-mediated social learning, there are
also contexts in which algorithms complement or even improve social learning in online networks. Content algorithms are
very good at recommending and amplifying like-minded people who share our interests [13] and, thus, help us increase
our relational mobility [126]. Greater relational mobility, when it is not centered around moralized identities, can help im-
prove social-learning outcomes, such as trust, self-esteem, and passion [127]. Content algorithms also amplify the most
popular content and information, which can bolster the wisdom of crowds in specific contexts that do not typically involve
moralization, such as stock market decision-making [128]. Finally, although content algorithms tend to amplify PRIME in-
formation, if they are designed in the right way they can also act as key information quality filters to downrank divisive con-
tent andmisinformation that tend to hinder our social learning [129]. By identifying current areas where algorithm-mediated
social learning improves learning outcomes, both scientists and practitioners can better understand how to improve con-
tent algorithms’ current design.
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Figure 1. Algorithm-mediated social learning in online social networks. During algorithm-mediated social learning,
content algorithms on social media platforms exploit human social-learning biases and amplify prestigious, ingroup, moral
and emotional (‘PRIME’) information as a side-effect of goals to maximize engagement on the platforms. Humans naturally
attend to PRIME content (A) and learn to produce more of it when content algorithms amplify PRIME information (e.g., via
observational and reinforcement learning) (B,C), thus creating a digital environment that inflates (relative to no algorithm
influence) the amount of PRIME information in many contexts, such as discussions of morality and politics. (D) When
PRIME information oversaturates digital environments, it can increase conflict and facilitate the spread of misinformation,
even when biases toward PRIME information typically facilitate cooperation and collective problem-solving.

Trends in Cognitive Sciences
view all of these posts. Content algorithms must select the information we see and decide what
kind of information to amplify [50].

Content algorithms systematically exploit human social-learning biases because they are de-
signed to optimize attentional capture and engagement time on the platform, and social-learning
biases strongly predict what users will want to see. Given that major social media platforms derive
nearly all of their revenue from advertisementsvi, vii, algorithms are designed to amplify content that
sustains user attention and keeps users on social media platforms to maximize advertising reve-
nue profits [5,16–18]. Since humans are biased to attend to, remember, and transmit PRIME in-
formation, it is not surprising that algorithms trained on human preferences end up amplifying
PRIME information in the digital environment.
950 Trends in Cognitive Sciences, October 2023, Vol. 27, No. 10
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There is growing evidence of algorithmic amplification of PRIME content. Recent research sug-
gests that algorithms amplify prestigious individuals on social media more than they do
nonprestigious individuals. One study found that 3% of YouTube channels captured 85% of
the total viewership of the site [51]. Another found that the top 20% of all Twitter users own
96% of all followers, 93% of all retweets, and 93% of all mentions [52].

Several studies have also found that content algorithms amplify ingroup information. The
Facebook algorithm demotes out-partisan news stories compared with an unsorted feed [53],
and broader studies of multiple social media sites also find amplification of in-partisan content
[54]. YouTube users who were most skeptical of the 2020 US election results were three times
more likely to be recommended videos that questioned the legitimacy of the 2020 US election
compared with users who did not express skepticism [10]. Similarly, the longer that partisan
users follow the recommendations of the YouTube algorithm, the more their videos become bi-
ased toward their own partisan identity [55,56]. Search engine algorithms also biased users’ ex-
posure to news containing in-partisan messages compared with when users manually selected
the news they would like to view [57].

In many cases, social media algorithms expose people to ingroup values and opinions that are
even stronger than their own positions [58,59]. While there are several studies that find social
media also exposes users to out-partisan information, thus countering the simple idea of
‘informational echo chambers' [60], many of these studies use self-reported data and conflict
with digital trace data studies that find consistent evidence of ingroup bias [61]. Furthermore,
the out-partisan information we are exposed to is often colored with ingroup commentary [5].

A growing number of studies have also demonstrated that moralized and emotional information is
highly likely to spread through online social network platforms [5,62–71]. Both independent re-
search using randomized controlled trials and internal company research have documented
how content algorithms specifically amplify moralized and extreme political content [7,8,72]i,ii to
the point where users believe content is more socially representative than it really is [73,74].

Taken together, the studies reviewed suggest that algorithms exploit social-learning biases by am-
plifying PRIME information (Table 1, Key table). As a result, PRIME information is over-represented
in the digital environment, which also provides input to human social learning unfolding in response
to algorithm behavior in online social networks.

Feedback loops in algorithm-mediated social learning
Observational learning
When content algorithms exploit human social-learning biases and amplify PRIME information, they
not only increase our exposure to this information, but also change what we think is appropriate in
our online networks via observational learning [5,64]. Observational learning describes how people
alter their behavior in response to watching others, and is it especially helpful for teaching us what
kinds of behavior are socially appropriate and representative (i.e., common) in a social group [1–3].
By increasing the probability that a user observes PRIME information, content algorithms should
also lead users to perceive PRIME information as more normative and representative.

Several recent studies show that algorithm-mediated observational learning teaches users to
transmit more PRIME information. For instance, Twitter users’ outrage expression is predicted
by the amount of outrage they observe in their social network and has a causal impact on deci-
sions to express outrage in a message [64]. Similarly, experimentally manipulating exposure to
toxic comments on Facebook news pages increased a user’s own toxic comments [75]. Another
Trends in Cognitive Sciences, October 2023, Vol. 27, No. 10 951
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Table 1. Summary of empirical evidence for components of the algorithm-
mediated social-learning modela

Model link and study Information type Platform(s) studied Refs

Learning bias toward PRIME information (A)

Chudek et al. (2012); Henrick and
Gil-White (2001); Kendal et al.
(2009)

Prestigious – [21–23]

Buttelmann et al. (2013); Richerson
et al. (2016); Nowak (2006); Atran
(1998); Hammand and Axelrod
(2006); Nairne et al. (2008)

Ingroup – [24–29]

Mesoudi and Whiten (2008); Fehr
and Gächter (2000); Baumeister et
al. (2001); Gelfand et al. (2017);
Öhman et al. (2001); Rozin and
Royzman (2001); Gantman and
Van Bavel (2014); Gintis et al.
(2005); Gavrilets and Richerson
(2017); Jackson et al. (2019);
Bebbington et al. (2017); Fiske
(1980); Skowronsky and Carlston
(1989)

Moralized, emotional – [30–42]

Algorithmic amplification of PRIME information (B)

Bärtl (2018); Zhu and Lerman
(2016)

Prestigious YouTube, Twitter [51,52]

Bisbee et al. (2022)b; Levy (2021)b;
Nikolov (2019); Brown et al.
(2022)b; Kaiser and Rauchfleish
(2020)*; Beam (2014); Aruguete et
al. (2021); Cinelli et al. (2021)b

Ingroup YouTube, Facebook,
Twitter

[10,53–59]

Chowdhury (2021)b; Chakradhar,
S. (2021)b; Huszár (2022)b; Milli
(2023)b; Brady et al. (2017); Brady
et al. (2019); Brady et al. (2021);
Brady et al. (2020); Rathje et al.
(2021); Schöne et al. (2021);
Valenzuela et al. (2017); Whittaker
(2021); Argute et al. (2022); Brady
et al. (2023)b

Moralized, emotional YouTube, Facebook,
Twitter

[7,8,62–65,69–74]i,ii

Social learning teaches users to produce more PRIME information (C)

Kim and Ellison (2022); Vraga et al.
(2015); Ceylan et al. (2023); Galego
et al. (2021)

Ingroup Facebook, Twitter [76,77,82]viii

Brady et al. (2021); Brady et al.
(2023); Kim et al. (2021); Shepard
(2020)

Moralized, emotional Facebook, Twitter Reddit [64,74,75,88]

aLetters (A–C) refer to model links designed in Figure 1 in the main text.
bStudies that attempt to disentangle correlated effects of algorithm amplification versus user preferences through experimen-
tation (e.g., using randomized control trials on social media or behavioral experiments in mock social media environments) or
observation (e.g., observing what content is recommended to users by their personalized feeds); otherwise studies focus on
macro-level patterns of engagement where algorithm amplification and user preferences are correlated.

Trends in Cognitive Sciences
study acrossmultiple platforms found that social media users’ observation of political behaviors in
their feed predicted their own political posting behavior as well as offline political behavior [76].
Qualitative studies of Facebook users found that their willingness to share political information
was predicted by observations of norms regarding political content based on their feed [77].
952 Trends in Cognitive Sciences, October 2023, Vol. 27, No. 10
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These studies show that content algorithms, by encouraging us to view PRIME information, also
encourage us to produce PRIME information via observational learning.

Reinforcement learning
Content algorithms also reward users who post PRIME information with more exposure. This is
important because social feedback via ‘likes’ and ‘shares’ drives future social media activity
[64,78]. Perhaps more importantly, algorithms also deliver posts containing PRIME information
to a broader audience, including people from outside the user’s direct social network
(e.g., ‘context collapse’ [79]). By rewarding PRIME information through exposure and feedback,
content algorithms teach users to produce more of this content through reinforcement learning or
learning that occurs in response to positive or negative social feedback [80]. When a user posts
PRIME information, they are more likely to get socially rewarded and, thus, learn to post more
PRIME information.

Several studies have now demonstrated that the algorithm-mediated delivery of social feedback
on social media platforms directly shapes users’ behavior via reinforcement learning
[64,78,81–83]. For instance, the posting behavior of users of Instagram and web forums can
be predicted as a direct function of social rewards received in their posting history [78]. Similarly,
Reddit users are more likely to post to communities that previously gave them more positive so-
cial feedback [83], and Facebook users are likely to post more regularly and at faster intervals to
gain positive social feedback [81].

Similar reinforcement learning dynamics have been demonstrated specifically for learning to post
more PRIME information over time. For example, Twitter users’moral outrage could be predicted
by whether users had received positive feedback in response to their previous outrage posts [64].
Furthermore, in a mock social media environment, manipulating positive feedback for outrage
posts increased users’ likelihood of expressing outrage over partisan political issues [64]. Even
political leaders' decisions to post PRIME information are sensitive to reinforcement learning:
Spanish politicians' Twitter accounts systematically changed the political issues they discussed
based on social feedback received from previous postsviii.

Gaming
Observational and reinforcement learning can create feedback loops of amplified PRIME informa-
tion without any user awareness that they are participating in this process, but some users
intentionally alter their social media activity based on learned knowledge of algorithmic amplifica-
tion. This behavior is referred to as ‘gaming’, in which users manipulate their post content so that
algorithms are more likely to feature the content on news feeds or search engine results. Gaming
is relatively rare because most people are not aware of how algorithms work. Those who do tend
to be younger and more educated [84–86]. They also tend to be individuals engaging in personal
promotion or political persuasion [87,88]. Given that the knowledge required to game algorithms
is rare, yet the content of these users will get amplified and have an outsized influence on social
media feeds, highly motivated extreme political users can exacerbate feedback loops of amplify-
ing PRIME information. This process may be a key mechanism through which extreme political
viewpoints gain exposure online [88].

In summary, emerging evidence shows how algorithm-mediated social learning directly shapes
user posting behavior, including how often users post, when they choose to post, and their
decisions to post PRIME information. Our discussion of feedback loops implies that algorithm-
mediated social learning should continually produce more PRIME information over time, and
there is some evidence for increased negativity since the advent of algorithms [89]. However,
Trends in Cognitive Sciences, October 2023, Vol. 27, No. 10 953
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PRIME information is unlikely to comprise the entire information landscape even though the feed-
back loops described in the preceding text amplify it (Box 2).

Algorithm-mediated social learning produces social misperceptions
When PRIME information is artificially amplified via human–algorithm interactions, a key conse-
quence is that PRIME information is over-represented relative to the true base rate in users’ social
networks (i.e., people seemore PRIME content than they would if they randomly sampled content
from people in their immediate social network). For example, several studies spanning different
social media platforms found that negative emotional, moralized, and politically extreme informa-
tion is over-represented on the platform as a result of the interaction of human preferences and
algorithmic amplification. Given that such information is promoted by algorithms, users perceive
it to be more socially representative of dialog on social media than it really is [73,74].

Over-representation of negative moralized content in the context of politics is a problem because
this content is only generated by a minority of users [90], yet users may infer that it is more com-
mon based on its representation in news feeds. For instance, recent work found that, whenmoral
outrage is over-represented in users’ social media feeds, it increases their perception of the affec-
tive polarization of their social network, norms of outrage expression, and ideological extremity
[74]. Over-representation of negative moralized content may be a key process by which conflict
is exacerbated online: when we overestimate the extent to which our ingroup or outgroup feels
negatively toward each other, it increases intergroup conflict [91–93]. Furthermore, recent exper-
imental studies demonstrated that, when content algorithms over-represent ingroup political in-
formation, it increases polarization [53] (but see also [94]).

If algorithm-mediated social learning leads us to misperceive PRIME information as more preva-
lent than it really is, this may create an environment that facilitates the spread of misinformation.
Recent work found that viral misinformation exploits emotionality [95,96] and that users are less
discerning of fake news and are more likely to share fake news when they rely on their immediate
emotional responses rather than deliberating about the news content [97,98].

Misinformation profiteers are especially likely to exploit moral outrage and anger because it
helps them spread content widely. Feeling outraged also makes people more motivated to
share news regardless of its accuracy [99]. Bots and troll farms originating from several
Box 2. Constraints on feedback loops of algorithm-mediated social learning

If human–algorithmic interactions tend to increase PRIME information via feedback loops of social learning and algorithmic
amplification, one question is why social media platforms are not converging to exclusively contain PRIME information over
time. Although there is evidence that online social information governed by algorithms is increasing in negativity over time
[70,89], obviously PRIME information is not the only content represented in online social networks. There are at least three
processes that constrain the human–algorithmic interactions that amplify PRIME content. First, certain contexts have dif-
ferent norms of expression that make it more appropriate to express positive emotions or less divisive content, thus
constraining the spread of PRIME content in those contexts. For example, certain moralized events go viral with positivity
because of the celebration surrounding the event [62] (e.g., #lovewins after the US Supreme Court decision to legalize
same-sex marriage) and certain cultures are more influenced by positive emotions because of different emotion norms
[130]. Second, although we focus on key human social-learning biases, there are also other competing attention biases
driving online behavior that can compete with biases toward PRIME information. For instance, we are often drawn to sur-
prising content that can be positive and may not be prestigious, negative, or moralistic at all [96,131]. Finally, although
humans are inherently social, sometimes we fail to use social information when it is available due to inefficient social learn-
ing. We are less likely to use social information when we have conflicting prior beliefs or when transmission is noisy [132].
Thus, algorithm-mediated social learning alone cannot explain all information dynamics online because, at times, we dis-
count social information altogether. In summary, algorithm-mediated social learning often leads to the spread of PRIME
information, yet this outcome is constrained by varying social norms of emotion expression, competing attention biases,
and inefficient social learning.
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countries also specifically use moralized, emotional, and ingroup information to sow discontent
and misinformation across several platforms [100]. Furthermore, the advent of deepfakes
(videos that use neural networks to manipulate the face of individuals) has shown howmisinfor-
mation can spread by exploiting prestige bias (i.e., when users make a famous or important
person produce information that is false or manipulative [101,102]). Taken together, recent
work has documented that the algorithmic amplification of PRIME information can lead to
social misperceptions that create environments ripe for intergroup conflict and the spread
of misinformation.

Functional misalignment and cultural evolution in the digital age
In theories of cultural evolution, social learning is the engine of cultural transmission, and many
theories argue that the social-learning biases described in the preceding text are key to cumula-
tive cultural evolution when culture builds on itself over time [14,103]. Throughout this article, we
have suggested that algorithm-mediated social learning can oversaturate digital environments
with PRIME content in ways that lead to social misperceptions. We have focused so far on
the immediate consequences of promoting PRIME content for cooperation and emotional well-
being, but promoting this content could also produce harmful longer-term patterns of
cultural evolution.

For example, algorithm-mediated social learning may encourage tipping points that promote ex-
treme social and political norms. Culture does not change linearly, but rather by pulses and
pauses, including tipping points, which catalyze major cultural innovation [104]. Tipping points
typically result when useful norms are adopted en masse, but even fringe norms can rapidly
spread through a population when a small group of devoted individuals consistently pushes an
extreme belief or narrative [105,106].

Algorithms may encourage these kinds of unhealthy tipping point by promoting and rewarding
fringe information because it activates our social-learning biases. There are now several docu-
mented examples of political groups using tipping points for spreading cultural narratives online
[107–109]. In algorithm-mediated social learning environments, users may perceive these ex-
treme narratives as more common and normative than they really are [74]. For example, Trump
voters were much more likely to be presented with extremist views about fraud in the 2020 US
election by content algorithms [10]. Seeing this promoted content, especially if it is associated
with prestigious individuals (e.g., senators or House representatives), may encourage users to
infer that beliefs about election fraud are widespread and held with little doubt, increasing the like-
lihood that users adopt these beliefs.

These algorithm-influenced tipping points are concerning because they may accelerate the
spread of fringe theories and misinformation. These processes also implicate other aspects of
cultural evolution, for instance raising the possibility that algorithm-mediated social learning
could impact the efficacy of moralistic norms [47,110] (see Outstanding questions).

Aligning algorithms with functional social learning
Given that content algorithms are currently misaligned with functional human social learning in
their design, both users and social media companies should be motivated to realign the goals
of algorithms and human social learners because it can improve users’ experience. Many social
media users are ‘exhausted’ by the growing spread of PRIME information on social media
[111,112], and specifically think that divisive moral and emotional content should not be amplified
on social media [112]. In this section, we outline two strategies for honoring this preference and
improving algorithm-mediated social learning.
Trends in Cognitive Sciences, October 2023, Vol. 27, No. 10 955
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Bounded informational diversification
One path to improving algorithm-mediated social learning could involve changing how content
algorithms are designed. Content algorithms have a range of benefits (Box 1), but they may
also benefit from modifications. For example, algorithms could seek to amplify more diverse in-
formation. Models of collective problem-solving show that maintaining diversity can improve
problem-solving quality [113–115]. One reason why algorithms perform so well at games
such as chess and Go is that they have learned a diverse set of human strategies, which
they can use to suggest optimal solutions [116,117]. Humans may also benefit from content
algorithms that increase diverse content. Recent research shows that exposing people to
viewpoints from outside their immediate social network can reduce personal bias and group-
think in mundane decision-making games about colors, especially among motivated actors
[118].

However, diversifying social media may not be as simple as winning a game of chess, and
algorithms that blindly increase content diversity may backfire in several ways. These algo-
rithms could unintentionally amplify fringe political beliefs on the feeds of politically moderate
users. They could also increase disagreement and partisan sorting. Research shows that
partisan conflict does not result from ‘echo chambers’, but precisely the opposite: conflict
arises when people who hold diverse political views discuss highly divisive topics in the same
space [94,119]. This evidence suggests that wholesale diversification is not a good strategy
for content algorithms. Wholesale diversification may work well when people play games with
well-defined structures, but it may fail in important contexts where people discuss moral and
political topics.

We suggest that bounded informational diversification might overcome this limitation. In other
words, social media algorithms should diversify content along specific theory-informed dimen-
sions, the very same dimensions that comprise our PRIME model. Throughout this paper, we
have argued that algorithms implicitly amplify PRIME content by learning from human attentional
biases. We suggest that an effective design-centered approach could explicitly penalize PRIME
content to counteract human attentional biases. Newsfeeds could still prioritize posts from strong
and weak ties within users’ social network, but these posts would be less inflammatory,
less tribalist, less outrage-inducing, and more representative of how people communicate in
the real world.

A limitation of this approach is that it may still maintain ‘echo-chamber’ interactions
because of issues such as partisan sorting. Nevertheless, the alternative of amplifying
cross-partisan interactions online may exacerbate conflict more than mitigate it [94,119]
(see also Outstanding questions).

Transparency of algorithmic influence
In addition to design-centered approaches, it may be equally important to develop person-
centered solutions that empower users to make decisions that can improve their social learning
without relying on changes being made by platforms [5,120]. We suggest that a key hybrid
design/person-centered solution is to increase transparency of algorithmic influence specifi-
cally to show users how algorithms influence the social information they see. This may be as
simple as defining the reason why a post was promoted (e.g., because it comes from a
close social tie or because the algorithm deems a post to have engaging content).

Increasing algorithm transparency is especially important because most social media users do
not understand how algorithms affect the content they see [84–86], and because public
956 Trends in Cognitive Sciences, October 2023, Vol. 27, No. 10
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Outstanding questions
How does algorithm-mediated social
learning impact the efficacy of moralis-
tic norms? If moralistic information is
over-represented in the environment,
it may become more difficult for us to
choose which moral issues are most
worthy of our efforts.

How can algorithm-mediated social
learning be leveraged to spark sus-
tained collective action? We have
seen cases, such as #MeToo and
#BlackLivesMatter, bring attention to
collective action, yet the extent to
which these digital norms are sus-
tained offline remains unclear.

How will greater algorithmic
transparency impact our social-
learning processes and our awareness
of them? It is an open empirical ques-
tion whether people will adjust their so-
cial inferences when they have a
greater understanding of the informa-
tion that is most likely to be amplified
by algorithms.

What are the neural underpinnings of
algorithm-mediated social learning?
When PRIME content saturates our
digital environment, how do brain sys-
tems key for reward and motivation,
such as the midbrain dopaminergic
system, respond to such information?

How can we best study the interaction
of algorithmic amplification and social
learning in one paradigm? Studies
that simply manipulate algorithm
selection or study a users’ learning
history in isolation are unlikely to
accurately estimate the effects of
algorithm-mediated social learning.

Since a user’s exposure to algorithms
and learning history is highly variable,
which populations of individuals are
best to study to isolate effects of
algorithmic amplification versus social
learning?

Given that there is large social media
user heterogeneity, what types of
user are most likely to have algorithm-
mediated social learning lead to social
misperceptions?

What timescale is required to detect
the impact of content algorithms on
our attitudes and behaviors?
demand for interpretable algorithms is particularly high for applications concerning morality and
fairness [121]. Better working knowledge of how algorithms impact social information could
facilitate users adjusting their social inferences developed by observational and reinforcement
learning.

Private companies may never develop algorithms that fully align with human cooperation and
problem-solving, because these companies are motivated by profit [122,123]. However, algo-
rithm transparency can mitigate this conflict of interest. An even more ambitious goal could be
to give people full control over the algorithms that personalize their content. However, allowing
people full control over algorithms could simply amplify existing social-learning biases, as in the
case of current algorithms that maximize attentional capture, but there are ways to allow users
to intentionally change algorithms without having full control, such as in the case of selective filter-
ing [124]. If users want to avoid politically polarized content, this may be as simple as selecting an
algorithm that does not promote outrage-inducing posts.

Concluding remarks
In this review, we covered emerging evidence suggesting that content algorithms exploit human
social-learning biases toward PRIME information to sustain attention and engagement with plat-
forms. By promoting PRIME information, algorithms teach users to express more of this informa-
tion themselves via observational learning and reinforcement learning. We argued that these
human–algorithmic interactions are a case of functional misalignment because they produce a
digital environment that over-represents PRIME information to the point where it fuels conflict
and misinformation rather than cooperation and collective problem-solving. Our framework also
suggests that human–algorithm interactions can better support functional social learning by
increasing the amplification of bounded diverse information and increasing transparency of
algorithm influence.

Our functional misalignment perspective generates several future research directions (see also
Outstanding questions). First, it is important to better understand exactly how much variance is
explained by content algorithms versus human social learning in their joint influence on people's
behavior on social media [5,123]. We encourage cross-disciplinary studies to investigate this in-
teraction more precisely through field experiments, laboratory experiments, and computational
models [125]. We also encourage research that leverages the interaction of human social-learn-
ing biases and content algorithms to enhance interactions on social media (e.g., fostering accu-
rate social inferences and diverse interactions). More broadly, as content algorithms increasingly
dominate our access to information, the functional misalignment perspective highlights how small
design decisions can have large emergent consequences due to complex interactions between
algorithms and human social-learning mechanisms. Major efforts, including academic–industry
collaborations, will be required to better model the dynamics of what we learn from algorithms
and what algorithms learn from us.
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